收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

Developing energy forecasting model using hybrid artificial intelligence method

Shahram Mollaiy-Berneti  
【摘要】:An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation(BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand(gross domestic product(GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand(population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.

知网文化
【相似文献】
中国期刊全文数据库 前11条
1 ;Short-term load forecasting based on fuzzy neural network[J];Journal of University of Science and Technology Beijing(English Edition);1997年03期
2 李存斌;王恪铖;;A new grey forecasting model based on BP neural network and Markov chain[J];Journal of Central South University of Technology;2007年05期
3 ;A NEW HYBRID FORECASTING ALGORITHM AND ITS APPLICATION IN ECONOMIC ANALYSIS[J];Journal of Electronics(China);2007年05期
4 ;Hybrid partial least squares and neural network approach for short-term electrical load forecasting[J];Journal of Control Theory and Applications;2008年01期
5 ;A New Nonlinear Compound Forecasting Method Based on ANN[J];The Journal of China Universities of Posts and Telecommunications;2000年03期
6 S.Sp.PAPPAS;L.EKONOMOU;V.C.MOUSSAS;P.KARAMPELAS;S.K.KATSIKAS;;Adaptive load forecasting of the Hellenic electric grid[J];Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal);2008年12期
7 ;Crop Yield Forecasted Model Based on Time Series Techniques[J];Journal of Northeast Agricultural University(English Edition);2012年01期
8 K.K.Lai,Y.Nakamori;AN EMPIRICAL ANALYSIS OF SAMPLING INTERVAL FOR EXCHANGE RATE FORECASTING WITH NEURAL NETWORKS[J];Journal of Systems Science and Complexity;2003年02期
9 季彦婕;汤斗南;郭卫红;BLYTHE T.Phil;王炜;;Forecasting available parking space with largest Lyapunov exponents method[J];Journal of Central South University;2014年04期
10 SUN Xinyao;WANG Xue;WU Jiangwei;LIU Youda;;Prediction-based Manufacturing Center Self-adaptive Demand Side Energy Optimization in Cyber Physical Systems[J];Chinese Journal of Mechanical Engineering;2014年03期
11 陈娟娟;;Using fuzzy cognitive maps to model performance measurement system of Internet-based supply chain[J];Journal of Chongqing University;2006年04期
中国重要会议论文全文数据库 前10条
1 Huaji Shi;Weiguo Xie;Xingyi Li;;Demand Forecasting Optimization in Supply Chain[A];Proceedings of 2011 International Conference on Information Management and Engineering(ICIME 2011)[C];2011年
2 ;The studying of combined power-load forecasting by error evaluation standard based on RBF network and SVM method[A];2009中国控制与决策会议论文集(3)[C];2009年
3 ;Technology study of foF2 forecasting in the ionospheric disturbance[A];第十一届全国日地空间物理学术讨论会论文摘要集[C];2005年
4 董仙;徐炳吉;;Telecommunication traffic forecasting based on BP neural network trained by PSO[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
5 ;Ionosphere TEC Short-term Forecast Based On Frequency Spectrum Analysis[A];第三届中国卫星导航学术年会电子文集——S08卫星导航模型与方法[C];2012年
6 Jiaxing Zhai;Shaotao Dai;Liye Xiao;;The Optimization of Gray Model Applied to Super Short-term Load Forecasting[A];proceedings of 2010 3rd International Conference on Computer and Electrical Engineering (ICCEE 2010 no.2)[C];2012年
7 ;Grey-Markov Model for Forecasting Incidence Rate[A];第三届教学管理与课程建设学术会议论文集[C];2012年
8 ;On Multiplex Combination Forecasting Model Based on GA and ANN[A];第二十六届中国控制会议论文集[C];2007年
9 ;Preliminary studies on forecasting the sea surface temperature in the Indian Ocean and South China Sea[A];第28届中国气象学会年会——S5气候预测新方法和新技术[C];2011年
10 ;The Application of Genetic Algorithm-Radial Basis Function(GA-RBF) Neural Network in Stock Forecasting[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978