基于共振稀疏分解和松鼠优化算法的滚动轴承故障诊断
【摘要】:共振稀疏分解方法在滚动轴承故障诊断方面得到广泛应用,分解参数的选取对故障分离效果起决定性影响。为保证参数选择的准确性,提出基于松鼠算法的自适应共振稀疏分解多参数优化方法。以信号低共振分量峭度最大作为目标,使用松鼠算法同时优化共振稀疏分解的品质因子与权重系数;利用最优品质因子和权重系数对滚动轴承振动信号进行共振稀疏分解,得到高低共振分量;对低共振分量进行希尔伯特包络谱分析。通过仿真试验和应用实例证明,所提方法可以有效提取轴承的微弱故障信息,实现共振稀疏分解小波基函数库与耗散函数之间的最优匹配,具有较高的分离精度。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||
|
|
|||
|
|
|||||||||
|
|
|||||||||||||||||||||||||||||
|