收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

轴对称动力学问题的无网格自然邻接点Petrov-Galerkin法

陈莘莘  李庆华  刘永胜  
【摘要】:基于无网格自然邻接点Petrov-Galerkin法,提出了复杂轴对称动力学问题求解的一条新途径。几何形状和边界条件的轴对称特点,将原来的空间问题转化为平面问题求解。计算时仅仅需要横截面上离散节点的信息,无论积分还是插值都不需要网格。自然邻接点插值构造的试函数具有Kronecker delta函数性质,因此能够直接准确地施加本质边界条件。有限元三节点三角形单元的形函数作为权函数,可以减少域积分中被积函数的阶次,提高计算效率。数值算例结果表明,所提出的方法对求解轴对称动力学问题是行之有效的。

知网文化
【相似文献】
中国期刊全文数据库 前1条
1 马永政;郑宏;李春光;;应用自然邻接点插值法的块体非连续变形分析[J];岩土力学;2008年01期
中国硕士学位论文全文数据库 前1条
1 张义瑛;平面图邻接点区分边染色的一个结果[D];南京师范大学;2013年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978