收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于粒子群-向量机的汽车加速噪声评价

徐中明  谢耀仪  贺岩松  张志飞  涂梨娥  
【摘要】:以乘用车由50 km/h加速到100 km/h时的噪声信号为评价对象,用成对比较法对车内加速噪声品质偏好性进行主观评价实验,获得每个样本的偏好性评价值。计算各噪声样本的主要心理声学客观参数并进行相关分析。鉴于评价者对非稳态噪声主观评价过程的复杂性,建立支持向量机(Support Vector Machine,SVM)的主客观评价模型,并利用粒子群优化算法(Particle Swarm Optimization,PSO)对模型参数进行优化。为对比优化后预测效果,建立BP神经网络回归模型。结果表明,优化后的粒子群-向量机回归模型用于噪声声品质评价能获得更好的预测效果,可较大程度提高声品质预测精度。

知网文化
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978