求弹性半平面问题基本解的一个新方法
【摘要】:本文所提到的弹性半平面问题的基本解是一个满足特殊条件的弹性半平面的应力位移解答。这些条件为:(1)半平面内一点处作用有集中力X,Y或集中力偶M;(2)半平面边界为自由或固定边。利用平面弹性的复变函数方法,文中把弹性半平面基本解的问题归结为下列问题,使一个特定解析函数和另一个解析函数的共轭值在半平面边界上相等。对上述转化后的问题,只要利用复变函数的性质,不难从基本解的第一部分推导出基本解的第二部分。其中,基本解的第一部分是弹性全平面的本基解。从而,半平面问题基本解可以方便地得到。此外,文中还首次给出了:(1)集中力偶作用于半平面内一点时的基本解;(2)当半平面边界固定情况下的基本解。
【相似文献】 | ||
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|