收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于类Haar特征与级联AdaBoost算法的防震锤识别

金立军  闫书佳  刘源  
【摘要】:提出将类Haar特征与级联AdaBoost算法应用于输电线路防震锤的识别,以解决目前仅能针对单一防震锤进行识别的问题。首先,基于积分图计算快速得到图像的扩展类Haar特征,然后利用AdaBoost算法选取关键的具有较强分类特性的特征,产生一系列弱分类器以构成强分类器,最后通过级联的方式将强分类器组成级联AdaBoost分类器进行防震锤的分类识别。以实际的航拍图像作为测试样本进行实验,结果表明,该方法能够在复杂背景中有效地识别出防震锤,为后续的防震锤故障的诊断工作奠定了基础。

知网文化
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978