改进的径向基函数网络的研究及应用
【摘要】:针对径向基函数网络和传统遗传算法的一些不足,提出引入一种自适应机制的浮点数编码的遗传算法,并将其与梯度下降法混合交互运算,作为径向基函数网络的学习算法,形成了基于改进遗传算法的径向基函数网络,它克服了径向基函数网络的学习算法上的缺陷。采用改进的遗传算法,无需计算梯度等,限制很少,还可用模型的预测性能作为优化目标。同时,也解决了单独利用遗传算法往往只能在短时间内寻找到接近全局最优解的近似解这一问题。最后将该算法应用到某地区电力负荷预测取得理想效果。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||
|