收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

指数时程差分Runge-Kutta法在非线性高振荡及迟滞系统中的应用

闫海青  唐晨  张芳  罗弢  
【摘要】:为满足非线性高振荡及迟滞动力系统的高精度数值计算,提出了指数时程差分RungeKutta法;将传统的差分改为积分,构造出了二阶和三阶指数时程差分RungeKutta算法;将指数时程差分法应用于二阶高振荡动力系统、参数激励与强迫激励联合作用下的非线性振动系统以及迟滞非线性系统中,并与传统的RungeKutta法进行了比较;讨论了计算精度和效率.数值计算结果表明,对于非线性动力学系统,二阶指数时程差分RungeKutta法在计算效率和精度上要优于四阶传统RungeKutta法;该方法适合用于非线性动力学系统分析和数值计算的方法,获得的数值解能够揭示系统的本质特性.

知网文化
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978