代入法在证明三角条件等式中的应用
【摘要】:正 对于三角函数条件等式的证明,用类似于解方程组中的代入消元法把已知条件适当地代入,有时易于发现条件和结论之间的内在联系.举例于下。一、把已知条件或变形后的已知条件直接代入所证结论的一边或两边进行验证。例1.若cos a—sina=2~(1/2)sin a, 求证cos a+sina=2~(1/2)cosa。思路:把cos a看做未知数,由已知条件求出cosa的表达式,然后代入所证等式的两边,验证结论成立。证明:由已知,得 cosa=2~(1/2)sin a+sina ∵cosa+sina=2~(1/2)sina+sina +sina=2~(1/2)sina+2sina
【相似文献】 | ||
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|