黄瓜水分和硬度高光谱特征波长选择与预测模型构建
【摘要】:为实现高光谱对黄瓜新鲜度的快速、准确检测,以硬度和失水率作为品质指标,采用高光谱成像技术对同一批次不同贮藏日期的黄瓜进行检测。采用SavitzkyGolar法、多元散射校正、标准正态变量变换3种方法对黄瓜高光谱数据进行预处理,并对预处理结果进行对比,确定Savitzky-Golar预处理方法;运用竞争性自适应重加权算法、偏最小二乘、连续投影算法对高光谱特征波长进行选择,针对硬度指标分别选取了25,13,20个特征波长,针对失水率指标,分别选取了20,16,20个特征波长;运用BP神经网络构建黄瓜硬度和失水率预测模型。结果表明,基于连续投影算法所筛选出的特征波长光谱信息所建立的BP模型判别效果最佳,其对硬度判别的训练集准确率和测试集准确率分别为95.24%,91.67%;对失水率判别的训练集准确率和测试集准确率分别为97.78%,95.00%。
【相似文献】 | ||
|
|||||||||||||||||||||||
|
|
|||
|
|
|||
|
|
|||||||||||||||||
|
|
|||
|