限制隐私泄露的隐私保护聚类算法
【摘要】:为了解决在极端情况下数据挖掘中隐私泄露的问题,分析了在数据聚类时增加Laplace噪音可以避免隐私泄露的原理,结合主成份分析与噪音扰动方法,提出了一种限制隐私泄露的隐私保护聚类算法。该算法利用主成份分析除掉了数据的相关性,将Laplace噪音加入数据的主成份向量中,然后计算被扰动的数据之间距离变化值,这样可以避免扰动后的数据被还原,以达到在隐私保护聚类挖掘中限制隐私泄露的目的。仿真实验结果表明,该算法对于数据聚类时限制隐私泄露是正确有效的。
【相似文献】 | ||
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|