Z_q可逆等变平面系统的一般形式及极限环分支(英文)
【摘要】:研究平面多项式系统极限环的个数是著名的希尔伯特第16问题的重要部分,由于这一问题十分困难,人们不断研究一些具有某种对称性的系统,例如,关于Zq等变平面系统的一般形式及其极限环的个数已有很多研究.研究了Zq可逆等变平面系统.首先通过变换把实系统化为与之等价的复系统,研究系统在复平面下具有可逆等变的性质,给出了所有Zq可逆等变平面系统的一般形式,并作为推论具体给出所有不高于六次的平面多项式系统具有Zq(q=2,4,6,8.)可逆等变性质的具体形式.这一具体形式简洁明了,易于使用.作为应用特别研究了一类五次Z4可逆等变哈密顿系统的Z4可逆等变七次多项式扰动系统(称之为Z4可逆等变近哈密顿系统),利用Melnikov函数的展开式和Hopf分支方法,得到这一Z4可逆等变近哈密顿系统至少能从中心分支出24个小极限环,并给出了其极限环的分布.最后让七次Z4可逆等变扰动项中某些参数为零的情况下使之成为五次Z4可逆等变扰动多项式,研究所得Z4可逆等变五次近哈密顿系统,发现在五次Z4可逆等变多项式的扰动下,系统可分支出8个小极限环,这8个小极限环可形成2种不同的极限环分布.
|
|
|
|
1 |
杨军;;一类四次多项式Hamilton系统的幂零中心条件和极限环分支[J];邵阳学院学报(自然科学版);2011年02期 |
2 |
;[J];;年期 |
3 |
;[J];;年期 |
4 |
;[J];;年期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|