收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

显著经验正交函数分析及其在淮河流域暴雨研究中的应用

冯志刚  陈星  程兴无  徐胜  梁树献  
【摘要】:经验正交函数分解(EOF)是气候特征研究中常用的分析方法,但由于方法本身的原因,EOF主要模态不一定都能有效揭示资料场包含的气候模态。利用中国基本站和基准站1950 2009年逐日降水资料,运用显著经验正交函数分解(Dis—tinct EOF,DEOF)方法研究了淮河流域暴雨的统计特征。结果表明DEOF第1模态呈现了淮河流域暴雨量在南北方向上存在相反的变化,即流域中部、南部偏多(偏少)时,北部则偏少(偏多),第1主成分具有显著的16—17 a周期性变化,表明流域南北的旱涝变化存在年代际振荡;第2模态表现了淮河流域中部暴雨量的异常变化,第2主成分有明显的线性趋势,说明近50年来流域中部地区暴雨量有明显的上升趋势,并且在1990年前后由偏少转为偏多。对比DEOF和EOF的分析结果,发现DEOF能排除资料场中与随机扩散模型相关性较高的空间特征,能抓住与随机扩散模型有显著差异的分布特征并凸出显示出来,能从较强的背景噪声中凸出物理信号,因而能更好地估计真实的气候模态。

知网文化
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978