基于机器视觉的水下河蟹识别方法
【摘要】:为了探测河蟹在池塘中的数量及分布情况,为自动投饵船提供可靠的数据反馈,提出了基于机器视觉的水下河蟹识别方法。该方法通过在投饵船下方安装摄像头进行河蟹图像实时采集,针对水下光线衰减大、视野模糊等特点,采用优化的Retinex算法提高图像对比度,增强图像细节,修改基于深度卷积神经网络YOLO V3的输入输出,并采用自建的数据集对其进行训练,实现了对水下河蟹的高精度识别。实验所训练的YOLO V3模型在测试集上的平均精度均值达86. 42%,对水下河蟹识别的准确率为96. 65%,召回率为91. 30%。实验对比了多种目标检测算法,仅有YOLO V3在识别准确率和识别速率上均达到较高水平。在同一硬件平台上YOLO V3的识别速率为10. 67 f/s,优于其他算法,具有较高的实时性和应用价值。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||
|
|
|||
|
|
|||||||||||||
|
|
|||||||||||||||||||||
|