收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

Burgers方程和Whitham-Broer-Kaup浅水波方程的多孤子解

那仁满都拉  乌云  
【摘要】:本文利用齐次平衡法 ,首先得到了Burgers方程新的多孤子解 ,然后利用一种变换关系直接给出了Whitham -Broer -Kaup(简记WBK)浅水波方程的多孤子解。

知网文化
【相似文献】
中国期刊全文数据库 前20条
1 那仁满都拉,陈巴特尔;Whitham-Broer-Kaup浅水波方程新的多孤子解[J];力学与实践;2001年01期
2 薛社生,秦承森;Burgers方程初边值条件的控制[J];计算物理;2002年03期
3 彭亚绵,闵涛,张世梅,王宝娥;Burgers方程的MOL数值解法[J];西安理工大学学报;2004年03期
4 唐晨,刘铭,闫海青;Burgers方程的高精度多步显式格式[J];天津大学学报;2004年10期
5 夏莉;Kdv—Burgers方程一般形式的初值问题周期解的稳定性及若干估计[J];重庆工业管理学院学报;1996年02期
6 崔彩娥,陈若航,刘慕仁;一维Burgers方程的格子Boltzmann模型[J];广西师范大学学报(自然科学版);1998年02期
7 李作春,李华兵,孔令江,刘慕仁;Burgers方程的格子Boltzmann方法模拟[J];广西师范大学学报(自然科学版);2001年03期
8 秦茂昌,梅凤翔;Burgers方程的非古典势对称群及显式解[J];江西师范大学学报(自然科学版);2004年06期
9 罗振东,刘儒勋;Burgers方程的混合元分析及其数值模拟[J];计算数学;1999年03期
10 郭本瑜;Burgers方程的数值解(Ⅰ)[J];高等学校计算数学学报;1981年04期
11 李珏,李华兵,孔令江,刘慕仁;Burgers方程定态激波解的格子Boltzmann方法模拟[J];广西师范大学学报(自然科学版);2000年02期
12 罗振东,刘洪伟,张桂芳,段文蕾;Burgers方程基于混合有限元法的差分格式及其数值模拟[J];首都师范大学学报(自然科学版);2002年02期
13 梅树立,张森文,雷廷武;Burgers方程的小波精细积分算法[J];计算力学学报;2003年01期
14 韩庆书,龚霄雁;用特征型Galerkin方法求解Burgers方程[J];水动力学研究与进展A辑;1988年01期
15 忻孝康 ,朱士灿 ,张慧生;一维Burgers方程的各种差分格式研究[J];力学季刊;1980年01期
16 王文洽;Burgers方程的一种并行计算法[J];计算物理;2001年05期
17 张辉群;Burgers方程的行波精确解[J];西安工业学院学报;2004年02期
18 陈景良,陆金甫,肖世江;Burgers方程的交替分组显式方法[J];清华大学学报(自然科学版);1994年03期
19 马逸尘;带有粘性项Burgers方程解的适定性[J];计算数学;1989年02期
20 夏莉;RLW-Burgers方程初值问题周期解的唯一性[J];西南师范大学学报(自然科学版);1996年06期
中国重要会议论文全文数据库 前10条
1 李凌;袁德成;井元伟;苗鑫;;基于线上求解法的分布参数系统仿真[A];第八届全国信息获取与处理学术会议论文集[C];2010年
2 张解放;孟剑平;刘宇陆;;三维广义Burgers方程的变量分离解和双周期波结构[A];第十七届全国水动力学研讨会暨第六届全国水动力学学术会议文集[C];2003年
3 谢焕田;;Burgers方程区域分裂并行算法的稳定性验证[A];2009年全国开放式分布与并行计算机学术会议论文集(下册)[C];2009年
4 任福安;李青;刘汉礼;;对流占优Burgers方程的分步有限分析混合法[A];中国航海学会船舶机电专业委员会2000年度学术报告会论文集[C];2000年
5 张正娣;毕勤胜;;Whitham-Broer-Kaup方程的孤立波解及其演化过程[A];第八届全国动力学与控制学术会议论文集[C];2008年
6 薛郁;戴世强;谢腊兵;;二维交通流密度波的稳定性分析[A];自然、工业与流动——第六届全国流体力学学术会议论文集[C];2001年
7 申义庆;杨国伟;高智;;利用流体运动大小尺度方程组计算二维槽道湍流[A];计算流体力学研究进展——第十二届全国计算流体力学会议论文集[C];2004年
8 任安禄;林雪纲;鲁晓东;;非线性模型方程线法特征值稳定性分析数值试验研究[A];第十届全国计算流体力学会议论文集[C];2000年
9 吴德全;王健平;;有限谱NND格式计算可压缩流[A];计算力学研究与进展——中国力学学会青年工作委员会第三届学术年会论文集[C];1999年
10 高智;李明军;朱力立;;对流扩散方程的变步长摄动有限差分格式[A];计算流体力学研究进展——第十一届全国计算流体力学会议论文集[C];2002年
中国博士学位论文全文数据库 前10条
1 朱秀娟;关于磁单极方程和Ward方程[D];扬州大学;2009年
2 沈智军;中子输运方程数值解与Burgers方程格子Boltzmann方法研究[D];中国工程物理研究院北京研究生部;2000年
3 尤福财;非线性可积系统及其相关问题[D];上海大学;2009年
4 赵廷刚;若干发展方程的谱方法和谱元法[D];上海大学;2007年
5 吴刚;流体动力学方程的Fourier局部化方法[D];中国工程物理研究院;2009年
6 郭彦;基于特征思想的高分辨率格式的研究和应用[D];中国科学技术大学;2009年
7 郝瑞宇;可变参量光纤系统中光脉冲的传输特性研究[D];山西大学;2007年
8 张建兵;约束与孤子方程的解[D];上海大学;2009年
9 张翼;基于双线性方法的孤子可积系统[D];上海大学;2005年
10 张渊渊;孤子方程求解中的若干构造性技巧[D];大连理工大学;2007年
中国硕士学位论文全文数据库 前10条
1 贾月玲;广义的Korteweg-de Vries-Burgers方程的柯西问题[D];河北大学;2001年
2 霍朝辉;广义的Burgers方程和四阶Ginzburg-Landau方程的Cauchy问题[D];河北大学;2001年
3 崔菊连;Burgers方程和广义Burgers方程的两点边值问题[D];首都师范大学;2003年
4 蒋咪娜;广义BBM-Burgers方程初边值问题解的渐近行为[D];华中师范大学;2003年
5 王治安;广义Korteweg-de Vries-Burgers方程解的大时间行为[D];华中师范大学;2001年
6 冯伟斌;基于湍流自相似结构的大涡模拟算法设计[D];北京大学;2005年
7 杨洁;非零边值微商非线性薛定谔方程的孤子传输[D];暨南大学;2006年
8 孙海燕;解两种非线性波动方程的交替分段并行方法[D];中国海洋大学;2006年
9 王洪叶;Burgers方程基于特征正交分解方法的数值解法研究[D];北京交通大学;2008年
10 李雨;显式线性多步法及Burgers方程的指数积分法[D];哈尔滨工业大学;2007年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978