灰色补偿BP神经网络预测农机总动力—以吉林省为例
【摘要】:农机总动力的预测研究对于农业机械的“供给侧”改革有着重要意义和研究价值,科学合理的预测结果对于职能部门的规划制定有着重要的指导意义。农机总动力数据具有时间序列性质,本研究应用灰色GM(1,1)模型对其进行有效的预测分析。为了提高预测的准确性,应用BP神经网络对灰色残差数据进行处理,补偿灰色预测结果,建立了相应的预测模型。实验表明:该模型对于吉林省农机总动力的预测科学有效,并对吉林省未来5年的农机总动力进行了预测,为相关政策制定提供了科学依据。
【相似文献】 | ||
|
|||||
|
|
|||||
|
|
|||||||||||||||||||||
|