基于深度学习的智能学习资源推荐算法
【摘要】:为了提高资源推荐性能,采用广义回归神经网络完成资源推荐。首先,提取推荐系统的用户和资源特征,选择两者的特征差异值之和作为推荐系统目标函数,然后构建广义回归神经网络(Generalized regression neural network, GRNN)资源推荐模型。考虑到GRNN训练效果对平滑因子和核函数中心的依赖性强的特点,引入差分进化(Differential evolution, DE)算法对GRNN的平滑因子和核函数中心偏移因子进行优化求解:选择最小特征差异值求解函数作为DE算法适应度函数,通过DE算法的多次交叉、变异和选择操作,获得最优平滑因子和偏移因子。最后采用优化后的平滑因子和偏移因子进行GRNN资源推荐,生成特征差异较小的候选资源序列作为资源推荐序列。试验证明,选择合理的DE算法交叉速率和差分缩放因子,能够获得较好的平滑因子和偏移因子,GRNN也能够获得更好的推荐效果。和常用资源推荐算法比较,对于3种不同的训练样本,该文算法能够获得更优的资源推荐准确率,且RMSE值较低。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||
|