基于共享BERT和门控多任务学习的事件检测方法
【摘要】:事件检测任务的目标是从文本中自动获取结构化的事件信息。目前基于表示学习的神经事件检测方法能够有效利用潜在语义信息,但人工标注数据集的语义知识含量有限,制约了神经网络模型的认知广度。相对地,多任务表示学习框架,有助于模型同时学习不同任务场景中的语义知识,从而提升其认知广度。BERT预训练模型得益于大规模语言资源的充沛语义信息,具有高适应性(适应不同任务)的语义编码能力。因此,该文提出了一种基于BERT的多任务事件检测模型。该方法将BERT已经包含的语义知识作为基础,进一步提升多任务模型的表示、学习和语义感知能力。实验表明,该方法有效提高了事件检测的综合性能,其在ACE2005语料集上事件分类的F_1值达到了76.7%。此外,该文在实验部分对多任务模型的训练过程进行了详解,从可解释性的层面分析了多任务架构对事件检测过程的影响。
【相似文献】 | ||
|
|||||||||||||||||||||||||||
|
|
|||
|
|
|||||||||||||||||||||||||||||||||||||||||
|