基于人工蜂群算法优化SVM的NIR杉木弹性模量预测
【摘要】:【目的】利用近红外光谱分析技术,提出一种基于人工蜂群算法优化支持向量机(ABC-SVM)的木材弹性模量预测模型,为木材弹性模量无损预测提供科学参考。【方法】以294个杉木样本为试验材料,采用常规力学方法测量样本弹性模量,采集样本近红外漫反射光谱,选择350~2 500 nm光谱段,对原始数据进行15步指数平滑和一阶导数预处理,并利用主成分分析降维处理后的数据,建立偏最小二乘回归(PLS)模型、支持向量机回归(SVR)模型和人工蜂群算法优化支持向量机(ABC-SVM)模型预测杉木弹性模量,采用决定系数(R2)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)和平均绝对误差(MAE)对所建模型进行对比分析。【结果】PLS模型的R2为0.726 700、RMSE为6.744 9、MAPE为0.063 5、MAE为5.065 6; SVR模型的R2为0.935 305、RMSE为3.528 1、MAPE为0.023 7、MAE为1.840 9;将人工蜂群算法用于SVM参数寻优,获得的最优参数c=5.670 51、g=0.031 25,ABC-SVM模型的R2为0.935 371、RMSE为3.526 0、MAPE为0.023 7、MAE为1.840 0。3种模型均可对杉木弹性模量进行有效预测。【结论】1)根据决定系数(R2),SVR和ABC-SVM模型的预测性能优于PLS模型,ABC-SVM模型的预测性能最佳; 2)根据均方根误差(RMSE)、平均绝对百分比误差(MAPE)和平均绝对误差(MAE),3种模型的MAPE均在可接受范围内,ABC-SVM模型关于误差的各项指标均最小,基于ABC-SVM模型预测杉木弹性模量高效、科学。