高对流Mach数三维混合层转捩特性分析及小激波结构模拟
【摘要】:采用空间大涡模拟方法对超/超混合、超/亚混合两类三维可压缩平面混合层转捩及其全湍流流场进行了研究,认为混合层动量厚度饱和点可作为流场转捩完成的标志。计算所得到的线性扰动波激励下流场转捩拟序结构与随机扰动下自然失稳结构以及文献结果进行了比对,其结果是一致的,表明了引入线性扰动激励来研究流场转捩结构是合理的。同时,本文还在较高对流Mach数流动下得到了三维流场动态小激波结构,其分布具有非对称特性,且形状与实验及直接数值模拟结果相似。不同条件混合层转捩计算表明:高对流Mach数下混合层转捩以Λ涡结构的形成和发展为主导机制,受扰动及对流条件的影响Λ涡结构不尽相同,某些情况下流场出现二维与三维涡结构共存现象。充分发展湍流区域,流场脉动速度分量量级相同,湍流压缩效应随着对流Mach数提高而明显增强。
|
|
|
|
1 |
易仕和;田立丰;赵玉新;何霖;;基于NPLS技术的可压缩湍流机理实验研究新进展[J];力学进展;2011年04期 |
2 |
;[J];;年期 |
3 |
;[J];;年期 |
4 |
;[J];;年期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|