基于RBF网络的粮食水分检测数据融合研究
【摘要】:为了提高测量的准确性和快捷性,需要融合处理多传感器检测的数据。本文首先介绍BRF网络的特性和训练方式,然后进行样本数据采集、样本数据归一化、神经网络的训练及其结构的确定,完成基于RBF网络的水分检测数据处理过程,实现粮食水分检测中的多传感数据融合。经过Matlab中的神经网络模型训练后,实验结果表明,拟合值始终在目标值上下波动,波动的范围在7%以内,该方法具有较大的优越性,可在其它工业领域中推广应用。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||
|
|
|||||||||||||||||||||
|