基于多学习策略的网页信息抽取方法
【摘要】:由于网页信息具有异构和动态的特点,致使现有的大多数网页信息抽取方法都存在适用性差的问题。为此,将传统的文本分类器和隐式马尔可夫学习策略结合起来,提出了一种基于多学习策略的网页信息抽取方法。该方法在获得网页文本记录的局部最优分类抽取结果基础上,还利用了整个网页文本结构信息对抽取结果进行进一步优化。实验结果表明,该方法不需要对新的站点进行学习,就能获得较高的信息召回率和抽取精度,具有较强的适用性。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|