收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

Multi-Domain Sentiment Classification with Classifier Combination

李寿山  黄居仁  宗成庆  
【摘要】:正State-of-the-arts studies on sentiment classification are typically domain-dependent and domain-restricted.In this paper,we aim to reduce domain dependency and improve overall performance simultaneously by proposing an efficient multi-domain sentiment classification algorithm.Our method employs the approach of multiple classifier combination.In this approach,we first train single domain classifiers separately with domain specific data,and then combine the classifiers for the final decision.Our experiments show that this approach performs much better than both single domain classification approach(using the training data individually) and mixed domain classification approach(simply combining all the training data).In particular,classifier combination with weighted sum rule obtains an average error reduction of 27.6%over single domain classification.

知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978