基于遗传算法-支持向量机的铁路货运量预测
【摘要】:铁路货运量预测是铁路运输部门一项重要工作。针对建立精确预测模型的困难,结合支持向量机与遗传算法(GA-SVM),提出一种铁路货运量预测新方法。利用遗传算法确定支持向量机中的训练参数,以得到优化的支持向量机预测模型,并利用支持向量机在小样本、非线性中优越的预测性能对铁路货运量进行预测。昆明市1991~2005年铁路货运量数据作为实验数据,并采用RBF神经网络与GA-SVM进行对比分析,实验结果表明,GA-SVM预测精确更高,误差更小,可以更有效地对铁路货运量进行预测。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||
|
|
|||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|