基于文化算法的聚类分析
【摘要】:分析了K-均值聚类算法所存在的不足,提出了基于文化算法的新聚类算法,并给出该算法的两个实现版本:CA-version1利用规范知识调整变量变化步长,形势知识调整其变化方向;CA-version2利用规范知识调整变量变化步长及变化方向。文化算法所具有的双层结构特性,使其在问题求解过程中能够利用经验知识来指导搜索过程,从而具有较好的全局寻优性能。仿真实验亦表明,两个版本的文化算法均能有效地克服传统的K-均值算法的缺点,而且全局收敛性能优于基于遗传算法的K-均值聚类算法,同时还可以看出第二个版本的文化算法更适于求解聚类问题。
|
|
|
|
1 |
徐丽;丁世飞;;粒度聚类算法研究[J];计算机科学;2011年08期 |
2 |
;[J];;年期 |
3 |
;[J];;年期 |
4 |
;[J];;年期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|