基于改进HED网络模型的破碎矿石图像分割方法
【摘要】:矿石的粒度大小是评判破碎机破碎效果的重要参考,而图像分割是矿石粒度检测的关键步骤。针对破碎矿石形状复杂、粘连和堆叠以及图像噪声严重而导致图像分割不准确的问题,提出一种基于改进HED(Holistically-Nested Edge Detection)网络模型的破碎矿石图像分割方法。首先,对采集的矿石图像进行双边滤波预处理操作,减少噪声对分割的影响;其次,使用残差可变形卷积块替代普通卷积块以增强模型对不同大小形状矿石的特征提取能力,并利用空洞卷积替代原有的池化层以扩大感受野,保留矿石的全局信息;最后,使用具有底部短连接结构的HED网络框架对矿石进行特征提取,并将提取的特征与低级的细节信息相融合,减少对粘连和堆叠矿石颗粒的欠分割问题。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||
|
|
|||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||
|