带阴性选择的粒子群优化算法
【摘要】:针对PSO在计算后期多样性不足、易发生优化停滞的现象,引入免疫系统中的阴性选择概念,定义了新的计算亲和力的方法,提出了带阴性选择的粒子群优化算法,并对其进行了计算复杂性分析.改进算法能在检测到粒子群收敛至局部解后,更新群体中的部分粒子,并使新粒子在解空间上远离局部解,提高了粒子的多样性.试验证明,改进算法的优化性能优于PSO和局部PSO.对改进算法的计算成本及参数选择进行了讨论,并提出了下一步的研究方向.
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|