关于实矩阵值对数函数(1)
【摘要】:如果矩阵A∈exp(gl(n,R)),就说A有对数矩阵.本文第一个主要结果如下:定理1 一个矩阵A∈GL(n,R)有对数矩阵的充要条件是它与某个正实化Jordan式矩阵相似,或者说,矩阵A关于其负特征值的初等因子均成对(能分成完全相同的两组).在Lie群论中,指数映射的重要作用是明显的.考虑其逆,对实矩阵值对数函数的研究自然也为人们所关心,并且这似乎还是未能深入解决的一个课题.
|
|
|
|
1 |
朱德高;具有两个Jordan块的Jordan标准形的平方根矩阵[J];数学物理学报;2000年04期 |
2 |
董胜伟;苏婷;;用Jordan标准型给出方阵的k次方根[J];科技信息;2009年28期 |
3 |
;[J];;年期 |
4 |
;[J];;年期 |
5 |
;[J];;年期 |
6 |
;[J];;年期 |
7 |
;[J];;年期 |
8 |
;[J];;年期 |
9 |
;[J];;年期 |
10 |
;[J];;年期 |
11 |
;[J];;年期 |
12 |
;[J];;年期 |
13 |
;[J];;年期 |
14 |
;[J];;年期 |
15 |
;[J];;年期 |
16 |
;[J];;年期 |
17 |
;[J];;年期 |
18 |
;[J];;年期 |
19 |
;[J];;年期 |
20 |
;[J];;年期 |
|