基于EMD-CNN-LSTM混合模型的短期电力负荷预测
【摘要】:为了更有效地提取电力负荷数据中的潜藏特征与隐藏信息,提高电力负荷预测精度,针对负荷具有较强非线性、非平稳性和时序性特点,提出一种基于经验模态分解(empirical mode decomposition, EMD)、卷积神经网络(convolutional neural network, CNN)和长短期记忆网络(long-term and short-term memory network, LSTM)的混合模型短期电力负荷预测方法,将海量过往负荷数据、温度和历史电价信息以滑动窗口方式构造串联特征向量作为输入,先利用EMD将数据重构成多个分量,将高、中和低频分量各自叠加组合,再运用CNN提取高、中分量的潜藏特征,减少权值数量,并以特征向量的方式输入LSTM网络进行负荷预测,最后叠加各分量预测结果得到最终负荷预测值。实验结果表明,相对于BP神经网络(Back Propagation Neural Network)、支持向量机(support vector machine, SVM)、LSTM模型和EMD-LSTM模型,此模型具有更高的负荷预测精度。