煤矿瓦斯涌出量预测及仿真研究
【摘要】:瓦斯涌出量受很多随机性因素的影响,传统的预测方法精度低,使得瓦斯事故频频发生。针对瓦斯涌出量系统的高度非线性和复杂性,为了提高瓦斯涌出量的预测精度,提出了基于自学习模糊神经网络的一种控制算法。用遗传算法离线训练该控制算法的参数,由于BP神经网络具有很强的局部搜索能力和对对象的适应能力,用BP网络在线学习参数,建立了基于自学习模糊神经网络控制算法的瓦斯涌出量动态系统的预测模型。对同煤某矿采集样本数据并进行预处理,建立了具有优化参数的网络结构。最后,将该控制算法的预测结果与实际值和常规模糊神经网络模型进行比较,说明了该控制算法降低了预测误差,具有更高的预测精度,为解决瓦斯预测问题提供了一条新的理论支持。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||
|