一种局部敏感的核稀疏表示分类算法
【摘要】:为了克服核稀疏表示分类(KSRC)算法无法获取数据的局部性信息从而导致获取的稀疏表示系数判别性受到限制的不足,提出一种局部敏感的KSRC(LS-KSRC)算法用于人脸识别。通过在核特征空间中同时集成稀疏性和数据局部性信息,从而获取具有良好判别性的用于分类的稀疏表示系数。在标准的ORL人脸数据库和Extended Yale B人脸数据库的试验结果表明,本文方法的分类性能优于传统的(KSRC)算法、稀疏表示分类(SRC)算法、局部线性约束编码(LLC)、支持向量机(SVM)、最近邻法(NN)以及最近邻子空间法(NS),用于人脸识别能够取得优越的分类性能。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|