分块K-循环Toeplitz矩阵求逆的快速付氏变换法
【摘要】:正1算法描述及推导 Toeplitz矩阵及Toeplitz系统的求解在谱分析、线性预测、误差控制码、自回归滤波器设计等领域内起着重要的作用~[1-3],而分块Toeplitz矩阵在计算机的时序分析、自回归时序模型滤波中也经常出现~[4]。对一般Toeplitz矩阵求逆,其算术复杂性为O(n~2)~[5]-[6],其中n为Toepleitz矩阵的阶,而K-循环Toeplitz矩阵的求逆,其算术复杂性可降为O(nlog_2n),本文提供了mn附分块K-循环Toeplitz矩阵求逆的一种快速付氏变换算法,其算术复杂性为O(mnlog_2mn).
【相似文献】 | ||
|
|||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|