CSNN:基于汉语拼音与神经网络的口令集安全评估方法
【摘要】:口令猜测攻击是一种最直接的获取信息系统访问权限的攻击,采用恰当方法生成的口令字典能够准确地评估信息系统口令集的安全性。该文提出一种针对中文口令集的口令字典生成方法(CSNN)。该方法将每个完整的汉语拼音视为一个整体元素,后利用汉语拼音的规则对口令进行结构划分与处理。将处理后的口令放入长短期记忆网络(LSTM)中训练,用训练后的模型生成口令字典。该文通过命中率实验评估CSNN方法的效能,将CSNN与其它两种经典口令生成方法(即,概率上下文无关文法PCFG和5阶马尔可夫链模型)对生成口令的命中率进行实验对比。实验选取了不同规模的字典,结果显示,CSNN方法生成的口令字典的综合表现优于另外两种方案。与概率上下文无关文法相比,在猜测数为107时,CSNN字典在不同测试集上的命中率提高了5.1%~7.4%(平均为6.3%);相对于5阶马尔可夫链模型,在猜测数为8×10~5时,CSNN字典在不同测试集上的命中率提高了2.8%~12%(平均为8.2%)。
|
|
|
|
1 |
江苏省海安县明道小学 许向前;轻松录入汉语拼音[N];中国电脑教育报;2005年 |
|