收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于MapReduce的多机并行DP算法与实验分析

张栋海  黄丽娜  刘晖  唐健  
【摘要】:随着网络地图不断发展,个性化网络地图也得到快速发展。个性化网络地图需要以矢量数据为数据基础,以满足人们对地图色彩、符号等个性化要求,所以需要实时、快速进行大量数据化简。本文以经典Douglas-Peucker算法作为曲线化简算法,利用开源云计算平台Hadoop建立多机协作的曲线并行化简服务框架,设计和实现了多机并行Douglas-Peucker算法,并在集群上进行实验分析,验证算法的效率和适用性。算法核心是设计数据的逻辑分片,利用MapReduce计算原理,将分片分配到集群中,实现并行运算。实验分别分为两个方面:(1)比较在固定阈值不同数据量情况下,传统DP算法与多机并行DP算法效率;(2)比较在相同数据量不同阈值情况下,传统DP算法与多机并行DP算法效率。实验表明,在大数据量和高复杂度情况下,多机并行DP算法的效率更高。

知网文化
【相似文献】
中国硕士学位论文全文数据库 前1条
1 李雪;1:500到1:5000城市街区道路地图的自动综合研究[D];昆明理工大学;2006年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978