西南“旱三熟”区不同作物和秸秆覆盖对土壤团聚体及固碳潜力的影响
【摘要】:为了探讨西南"旱三熟"(小麦/玉米/大豆)套作种植模式下农田土壤团聚体的分布特征及有机碳含量变化情况,进而估算该模式下的土壤固碳潜力,在重庆北碚西南大学试验农场对传统耕作(traditional tillage,T)和传统耕作+秸秆覆盖(traditional tillage+straw mulching,TS)2种处理下的土壤团聚体进行筛分和测定。结果表明,3种作物种植下的2mm粒径与2~0.25mm粒径团聚体含量此消彼长,存在显著的负相关关系(r=-0.985,P0.05)。土壤团聚体结构对不同作物的响应不同,水稳性大团聚体(0.25mm粒径)含量在小麦和大豆种植后高达90%左右,玉米种植后约为80%,说明种植玉米有利于土壤水稳性微团聚体的形成。2~0.25mm粒径团聚体的有机碳含量最高,而水稳性微团聚体的两个粒径团聚体有机碳含量相差不大,有机碳含量在团聚体中的分布规律不受种植作物和耕作方式的影响。秸秆覆盖显著提高了0~5cm和5~10cm土层的本土及各个粒径中的有机碳含量,且5~10cm土层团聚体有机碳受秸秆覆盖的影响较大。通过估算固碳潜力发现,玉米条带的土壤固碳潜力显著大于小麦-大豆条带,在耕作处理保持一致的情况下,土壤团聚体有机碳含量对农作物的响应不同。因此,在西南"旱三熟"地区,农田土壤团聚体分布特征和不同粒径有机碳含量受到耕作措施和种植作物的双重影响,土壤固碳潜力主要由水稳性大团聚体的固碳能力决定,水稳性大团聚体更易受到耕作措施和种植作物的影响,在实践中通过秸秆还田提高土壤固碳外,合理安排农作物也有助于提高土壤的固碳能力。
|
|
|
|
1 |
郭军玲;王虹艳;卢升高;;亚热带土壤团聚体测定方法的比较研究[J];土壤通报;2010年03期 |
2 |
王国强;孙焕明;;拉萨市农田和林地土壤团聚体的组成及稳定性研究[J];现代农业科技;2012年11期 |
3 |
郝余祥,程丽娟;不同粒径土壤团聚体的微生物组成[J];土壤学报;1964年02期 |
4 |
WUSTAMIDIN L.A.DOUGLAS
,王鸣远;土壤团聚体破坏与雨滴能量的关系[J];水土保持科技情报;1986年03期 |
5 |
D.J.Mc Queen;C.W.Ross;G.Walkert;张佳宝;;运用扫描电镜和分散/消散技术评价新西兰表层土壤团聚体的稳定性[J];土壤学进展;1989年02期 |
6 |
李越;李航;;土壤团聚体稳定性的研究概述[J];安徽农业科学;2014年11期 |
7 |
史奕,陈欣,沈善敏;土壤团聚体的稳定机制及人类活动的影响[J];应用生态学报;2002年11期 |
8 |
史奕,陈欣,沈善敏;有机胶结形成土壤团聚体的机理及理论模型[J];应用生态学报;2002年11期 |
9 |
赵京考,刘作新,韩永俊;土壤团聚体的形成与分散及其在农业生产上的应用[J];水土保持学报;2003年06期 |
10 |
文倩,关欣;土壤团聚体形成的研究进展[J];干旱区研究;2004年04期 |
11 |
王清奎,汪思龙;土壤团聚体形成与稳定机制及影响因素[J];土壤通报;2005年03期 |
12 |
宁丽丹,石辉,周海军,刘世荣;岷江上游不同植被下土壤团聚体特征分析[J];应用生态学报;2005年08期 |
13 |
石辉;;转移矩阵法评价土壤团聚体的稳定性[J];水土保持通报;2006年03期 |
14 |
安韶山;张扬;郑粉莉;;黄土丘陵区土壤团聚体分形特征及其对植被恢复的响应[J];中国水土保持科学;2008年02期 |
15 |
苏静;赵世伟;;土壤团聚体稳定性评价方法比较[J];水土保持通报;2009年05期 |
16 |
李江涛;钟晓兰;赵其国;;耕作和施肥扰动下土壤团聚体稳定性影响因素研究[J];生态环境学报;2009年06期 |
17 |
杨如萍;郭贤仕;吕军峰;侯慧芝;郭天文;;不同耕作和种植模式对土壤团聚体分布及稳定性的影响[J];水土保持学报;2010年01期 |
18 |
严波;贾志宽;韩清芳;杨宝平;聂俊峰;;不同耕作方式对宁南旱地土壤团聚体的影响[J];干旱地区农业研究;2010年03期 |
19 |
罗明;周运超;;喀斯特地区碳酸盐岩发育土壤团聚体稳定性研究[J];农业现代化研究;2010年04期 |
20 |
郝翔翔;窦森;安丰华;李明敏;;不同利用方式下土壤团聚体腐殖质组成及胡敏酸结构特征[J];水土保持学报;2010年05期 |
|