基于厚尾分布的非寿险准备金评估模型
【摘要】:未决赔款准备金评估是财产保险公司偿付能力管理的核心工作,通常使用的评估方法是广义线性模型.当增量赔款数据存在尖峰厚尾特征时,广义线性模型的传统分布假设可能与实际数据不相符合.此外,保险公司的多条业务线之间往往存在一定的相依关系,这就要求对总准备金的评估结果进行相应调整.本文使用三种新的厚尾分布(即幂Frechet分布、广义对数Moyal分布和全尾伽马分布)代替传统模型中使用的伽马分布、对数正态分布和GB2分布假设,考察它们在未决赔款准备金评估中的应用效果,并应用Copula函数描述了不同业务线之间的相依关系.借助参数化bootsrap和蒙特卡罗随机模拟方法,给出了准备金的预测分布和风险度量值.基于一组实际数据的研究结果表明,厚尾分布对于改善未决赔款准备金的预测效果具有很高的应用价值,而相依性的调整也使得准备金的预测结果更加合理.
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||
|