收藏本站
《天津理工大学学报》 2020年04期
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于Patch的多标签CSA-DNN手指静脉质量评估

梁雪慧  赵菲  程云泽  张瑞杰  
【摘要】:指静脉生物识别技术已被广泛研究用于个人认证.针对质量差的图像中的虚假和缺失功能可能会降低系统性能的问题,提出了一种多标签深度神经网络(CSA-DNN).在生物特征质量评估的主要目标(即验证错误最小化)的驱动下,假设在验证系统中错误地拒绝低质量图像,并且对低质量图像进行图像配准后转换成高质量图像进行身份识别.基于该假设,低质量图像和高质量图像被人工标记.在结构上引入通道空间注意力(CSA)模块增加特征学习能力,并将图像分成各种block,以增强网络鲁棒性.随后,估计来自测试图像的每个block的质量,再根据多标签预测的结构,采用B样条配准与融合滤波的方式将低质量图像变换为高质量图像,从而提高系统识别率与利用率,最后使用该算法在两个大型公共数据集上面测试,实验结果表明,采用该算法达到了最高准确率为92.5%,静脉身份验证最高精度为93.7%,图像最高利用率为98.5%的高效评估性能.

知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978