基于改进PSO的多传感器数据自适应加权融合算法
【摘要】:加权融合算法是多传感器数据融合中的常用方法,但加权因子的确定非常困难并直接影响算法的性能.文章提出利用改进的粒子群优化算法对各个传感器的加权因子进行自适应优化,引入种群进化度、聚合度来反映种群的多样性,当种群多样性低于阈值时执行变异操作,并交替使用基于聚合度、进化度的自适应惯性权重函数,从而避免算法陷入局部最优解.通过UCI数据集测例表明本文算法是一种较有效的多传感器数据融合方法,相对其它算法具有较高的融合精度.
【相似文献】 | ||
|
|||||||||||
|
|
|||||
|