收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

Functional origins of the vertebrate cerebellum from a sensory processing antecedent

John MONTGOMERY  David BODZNICK  
【摘要】:正 The structure of the cerebellar cortex is remarkably similar across vertebrate phylogeny. It is well developed in basaljawed fishes, such as sharks and rays with many of the same cell types and organizational features found in other vertebrategroups, including mammals. In particular, the lattice-like organization of cerebellar cortex (with a molecular layer of parallel fibres,interneurons, spiny Purkinje cell dendrites, and climbing fires) is a common defining characteristic. In addition to the cerebellarcortex, fishes and aquatic amphibians have a variety of cerebellum-like structures in the dorso-lateral wall of the hindbrain.These structures are adjacent to, and in part, contiguous with, the cerebellum. They derive their cerebellum-like name from thepresence of a molecular layer of parallel fibers and inhibitory interneurons, which has striking organizational similarities to themolecular layer of the cerebellar cortex. However, these structures also have characteristics which differ from the cerebellum. Forexample, cerebellum-like structures do not have climbing fibres, and they are clearly sensory. They receive direct afferent inputfrom peripheral sensory receptors and relay their outputs to midbrain sensory areas. As a consequence of this close sensory association,and the ability to characterise their signal processing in a behaviourally relevant context, good progress has been made indetermining the fundamental processing algorithm in cerebellar-like structures. In particular, we have come to understand thecontribution to signal processing made by the molecular layer, which provides an adaptive filter to cancel self-generated noise inelectrosensory and lateral line systems. Given the fundamental similarities of the molecular layer across these structures, coupledwith evidence that cerebellum-like structures may have been the evolutionary antecedent of the cerebellum, we address the question:do both share the same functional algorithm? [Current Zoology 56 (3): 277-284, 2010].

知网文化
【相似文献】
中国期刊全文数据库 前20条
1 ;The alkaline tolerance in Arabidopsis requires stabilizing microfilament partially through inactivation of PKS5 kinase[J];遗传学报;2011年07期
2 George E. Liu;Matthew T. Weirauch;Curtis P. Van Tassell;Robert W. Li;Tad S. Sonstegard;Lakshmi K. Matukumalli;Erin E. Connor;Richard W. Hanson;;Identification of Conserved Regulatory Elements in Mammalian Promoter Regions: A Case Study Using the PCK1 Promoter[J];Genomics, Proteomics & Bioinformatics;2008年Z1期
3 Shaun TD NEW;Richard A PETERS;;A framework for quantifying properties of 3-dimensional movement-based signals[J];Current Zoology;2010年03期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
11 ;[J];;年期
12 ;[J];;年期
13 ;[J];;年期
14 ;[J];;年期
15 ;[J];;年期
16 ;[J];;年期
17 ;[J];;年期
18 ;[J];;年期
19 ;[J];;年期
20 ;[J];;年期
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978