收藏本站
《中国图象图形学报》 2017年04期
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

L_p范数压缩感知图像重建优化算法

蒋沅  苗生伟  罗华柱  沈培  
【摘要】:目的压缩感知理论中的重构算法作为关键技术之一,在科学研究方面起到了关键的作用。常用的重构算法包括L_0范数的非凸优化算法和L_1范数的凸优化算法,但它们的缺点是重构精度不高,运算时间很长。为了克服这一缺陷,提高现有基于L_p范数的压缩感知图像重构算法的重建精度和算法效率,本文提出改进算法。方法针对拉格朗日函数序列二次规划(SQP)方法中海瑟(Hesse)矩阵不正定导致计算量很大的问题,引入价值函数,修正Hesse矩阵的序列二次规划方法并结合图像分块压缩感知技术,提出了一种基于L_P范数压缩感知图像重构算法。结果在采样率同为40%情况下,本文算法下的信噪比为34.28 dB,高于BOMP(block orthogonal matching pursuit)算法信噪比2%,高于当罚函数作为修正方法时的13.2%。本文算法计算时间为190.55 s,快于BOMP算法13.4%,快于当罚函数作为修正方法时的67.5%。采样率同为50%的情况下,本文算法下的信噪比为35.42 dB,高BOMP算法信噪比2.4%,高于当罚函数作为修正方法时信噪比12.8%。本文算法的计算时间是196.67 s,快于BOMP算法68.2%,快于81.7%。在采样率同为60%的情况下,本文算法的信噪比为36.33 dB,高于BOMP算法信噪比3.2%,高于当罚函数作为修正方法时信噪比8.2%。本文算法计算时间为201.72 s,快于BOMP算法82.3%,快于当罚函数作为修正方法时86.6%。在采样率为70%的情况下,本文算法信噪比38.62 dB,高于BOMP算法信噪比2.5%,高于当罚函数作为修正方法时信噪比9.8%。本文算法计算时间为214.68 s,快于BOMP算法88.12%,快于当罚函数作为修正方法时的91.1%。实验结果显示在相同的采样率的情况下,本文改进算法在重构精度和算法时间上均优于BOMP算法等其他算法。并且采样率越高,重构图像精度越来越高,重构算法时间越来越短。结论通过实验对本文算法、BOMP重构算法等其他算法在信噪比和算法计算时间进行对比,在不同采样率下,本文算法都明显优于其他两种算法,而且在采样率仅为20.5%时,信噪比高达85.154 3 dB,重构图像比较清晰。本文算法的最大优点在于采用了分块压缩感知技术,提高图像重构效率,降低了重构时间,缺点是在图像采样率比较低的情况下,存在图像干扰块效应。接下来研究方向是如何在采样率低的情况下,高精度地还原图片,消除图像干扰块效应。

知网文化
【相似文献】
中国期刊全文数据库 前1条
1 胡庆辉;丁立新;何进荣;;L_p范数约束的多核半监督支持向量机学习方法[J];软件学报;2013年11期
中国博士学位论文全文数据库 前2条
1 罗淼;Bonnesen型对称混合等似不等式与L_p混合质心体[D];西南大学;2016年
2 宋丽;非线性数学期望的性质和倒向随机微分方程的_L_P解[D];山东大学;2012年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026