收藏本站
《应用数学和力学》 2018年01期
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

一维弱噪声随机Burgers方程的奇摄动解

包立平  洪文珍  
【摘要】:讨论了一类有界区域上具有有色噪声干扰的随机Burgers方程奇摄动解,其波动率服从弱噪声Ornstein-Uhlenbeck(O-U)过程.由波运动的转移概率密度函数满足的后向Kolmogorov方程,得到随机Burgers的期望所满足的后向Kolmogorov方程.由于期望满足的后向Kolmogorov方程的初边值问题条件涉及到一类确定性Burgers方程的解,因此该问题实际上是Burgers方程和Kolmogorov方程的联立形式.首先,应用奇摄动方法,对一类确定性Burgers方程进行了正则渐近展开,由Schauder估计、Ascoli-Arzela定理证明了非线性抛物方程渐近解的有界性与存在性,由Lax-Milgram定理证明了线性抛物方程渐近解的有界性与存在性,得到波速率的形式渐近解.其次,由奇摄动理论,对期望满足的方程进行了奇摄动渐近展开和边界层矫正,由二阶线性偏微分方程理论,得到边界层函数渐近解存在且有界.应用极值原理、De-Giorgi迭代技术分别证明了波速率和波期望渐近解的余项有界,得到渐近解的一致有效性.
【作者单位】杭州电子科技大学理学院;
【基金】:国家自然科学基金(51175134)~~
【分类号】:O175

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 ;Notes on Solutions to Burgers-type Equations[J];Communications in Theoretical Physics;2004年04期
2 ;Pseudo-spectral Approximations for a Class of the Kdv-Burgers Type Equation[J];数学季刊;2004年03期
3 Nakao HAYASHI;Pavel I.NAUMKIN;;Asymptotics for the Korteweg-de Vries-Burgers Equation[J];Acta Mathematica Sinica(English Series);2006年05期
4 李文婷;陈续升;张鸿庆;;(2+1)维Burgers方程新的复合解[J];Northeastern Mathematical Journal;2007年05期
5 程荣军;程玉民;;A meshless method for the compound KdV-Burgers equation[J];Chinese Physics B;2011年07期
6 田畴;Burgers方程的无穷组对称[J];科学通报;1987年02期
7 盛平兴;Strange Attractor of KdV-Burgers Equation[J];Journal of Shanghai University;1997年02期
8 王治安,蒋咪娜;广义Korteweg-de Vries-Burgers方程解的一致估计(英文)[J];华中师范大学学报(自然科学版);2001年03期
9 李晓燕,王明亮,李保安;一个(2+1)维Burgers方程[J];洛阳工学院学报;2001年01期
10 吕卓生,任文秀,沈玉艳;Burgers方程的四阶对称[J];内蒙古工业大学学报(自然科学版);2002年02期
中国重要会议论文全文数据库 前6条
1 闭海;;配置法求解Burgers方程[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年
2 谢焕田;;Burgers方程区域分裂并行算法的稳定性验证[A];2009年全国开放式分布与并行计算机学术会议论文集(下册)[C];2009年
3 Hu Yanxia;;The properties of travelling wave solutions for Kdv-Burgers-Kuramoto equation[A];第25届中国控制与决策会议论文集[C];2013年
4 张解放;孟剑平;刘宇陆;;三维广义Burgers方程的变量分离解和双周期波结构[A];第十七届全国水动力学研讨会暨第六届全国水动力学学术会议文集[C];2003年
5 高翔;化存才;胡东坡;;时变系数下耦合KdV和Burgers方程组的孤波解[A];第九届全国动力学与控制学术会议会议手册[C];2012年
6 陈红菊;化存才;;同伦摄动法在求解分数阶KdV—Burgers—Kuramoto方程中的应用[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
中国博士学位论文全文数据库 前4条
1 张丹丹;BBM-Burgers方程解的适定性研究[D];上海交通大学;2014年
2 尹慧;广义Benjamin-Bona-Mahony-Burgers方程解的性态研究[D];中国科学院研究生院(武汉物理与数学研究所);2008年
3 王利娟;带耗散机制的双曲方程解的大时间行为[D];上海交通大学;2012年
4 沈智军;中子输运方程数值解与Burgers方程格子Boltzmann方法研究[D];中国工程物理研究院北京研究生部;2000年
中国硕士学位论文全文数据库 前10条
1 吕青;Burgers方程控制优化离散系统的预处理[D];兰州大学;2015年
2 木斯(Almushaira Mustafa M.H.);Burgers’方程的直线法数值解研究[D];华中师范大学;2016年
3 魏云云;二维Burgers方程的有限元数值解法[D];长安大学;2016年
4 邹明宇;Burgers方程的解析解和半解析数值方法[D];大连理工大学;2016年
5 周木兰;一维分数阶Burgers方程解的适定性及爆破准则[D];华中科技大学;2015年
6 孙露露;二维半空间上BBM-Burgers方程平面边界层解的稳定性及衰减估计[D];华中科技大学;2015年
7 程秀俊;非黏滞性延迟Burgers方程的数值算法研究[D];华中科技大学;2015年
8 吴剑文;Burgers方程的非局域对称的局域化及对称约化[D];宁波大学;2017年
9 张弘博;求解Burgers方程的数值方法及其稳定性分析[D];哈尔滨工业大学;2010年
10 胡瑜;Burgers方程的初边值问题的多重尺度分析[D];北京化工大学;2012年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026