收藏本站
《Journal of Systems Science & Complexity》 2017年05期
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

FIR Systems Identification Under Quantized Output Observations and a Large Class of Persistently Exciting Quantized Inputs

HE Yanyu  GUO Jin  
【摘要】:This paper investigates the FIR systems identification with quantized output observations and a large class of quantized inputs. The limit inferior of the regressors' frequencies of occurrences is employed to characterize the input's persistent excitation, under which the strong convergence and the convergence rate of the two-step estimation algorithm are given. As for the asymptotical efficiency,with a suitable selection of the weighting matrix in the algorithm, even though the limit of the product of the Cram′er-Rao(CR) lower bound and the data length does not exist as the data length goes to infinity, the estimates still can be asymptotically efficient in the sense of CR lower bound. A numerical example is given to demonstrate the effectiveness and the asymptotic efficiency of the algorithm.

【相似文献】
中国期刊全文数据库 前1条
1 陈翰馥;;RECURSIVE SYSTEM IDENTIFICATION[J];Acta Mathematica Scientia;2009年03期
中国重要会议论文全文数据库 前1条
1 Yan Zhibin;Chen Caiyun;;Convergence Analysis of Parameter Estimation in System Identification[A];第25届中国控制与决策会议论文集[C];2013年
中国知网广告投放
相关期刊
>Acta Mathema...
相关机构
>Key
相关作者
>陈翰馥
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026