基于SVM用户建模的核函数选择研究
【摘要】:用户建模是从用户偏好数据中建立用户偏好模型的过程,用户偏好数据具有系统运行初期的稀疏性和非线形的特点。支持向量机(Support Vector Machine,简称SVM)具有小样本学习、非线形处理的能力,是合适的用户建模工具。SVM的非线形处理能力主要依赖于核函数,采用不同的核函数进行建模对模型的预测效果有重大影响。本文重点研究核函数的选择对基于SVM建模方法的影响,从中选取了表现较优的小波核函数,构建性能突出的SVM进行用户建模。实验证明该建模方法可以有效地从小样本数据中学习用户偏好信息,建立反映用户真实偏好的用户模型。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|