【摘要】:关于竞赛图的弧泛迴路性问题,Alspach证明了正则竞赛图具有此性质.朱永津、田丰证明了若竞赛图 T 中任意一个弧(v,v_0)都满足条件 d~+(v_0)+d~-(v)≥p-2,这里 p 为 T 的顶点数,则当 p≥7时,T 中过任一弧存在迴路系列 C_4,C_5,…,C_p.本文提出并证明了若 T 满足以下条件:当 d~+(v)1/2(p-1)时,在 v 的外邻集 O(v)中有一点 u,d~+(u)≥1/2(p-1);当 d~+(v_1),d~+(v_2)1/2(p-1)时,有 u_1,u_2∈O(v_1)∪O(v_2),d~+(u_1),d~+(u_2)≥1/2(p-1),且对入次亦满足相应的条件,则当 p≥9和最小次数δ≥4时,过 T 的每一个弧存在迴路系列 c_6,c_7,…,c_p.此充分条件不要求顶点次数的正则性和几乎正则性,对 T 的不正则度 q=(?)|d~+(v)-d~-(v)|一般来说也没有限制.