收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于HSV空间颜色直方图的油菜叶片缺素诊断

张凯兵  章爱群  李春生  
【摘要】:为实现快速而准确的油菜缺素诊断,根据不同缺素导致叶片颜色的变化,提出一种基于HSV颜色空间的非均匀直方图量化和组合多个支撑向量机分类器的智能化油菜缺素分析与诊断方法。采用霍格兰配方配制营养液,并使用山崎配方无土栽培技术,模拟正常、缺氮、缺磷、缺钾、缺硼5类营养状况下的油菜生长条件,栽培了一批甘蓝型双低油菜新品种阳光2009,采集幼苗期5类油菜叶片图像建立缺素数据库。首先使用主动轮廓模型分割油菜叶片区域,然后提取分割后的油菜叶片区域的HSV颜色直方图特征,并采用非均匀量化表征不同缺素油菜叶片图像的颜色差异,最后利用一对多方案训练多个支持向量机(support vector machine,SVM)分类器实现不同缺素油菜叶片图像的分类识别。缺素分类试验结果表明,该方法能较准确地判别常见油菜的缺素类型,对5种缺素的总体识别率达到93%,为数字化和智能化的油菜营养分析与诊断提供了一条有效途径。

知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978