基于卷积神经网络的煤泥浮选泡沫图像分类方法
【摘要】:当前煤泥浮选泡沫分类研究多针对光照充足条件下泡沫图像,对于夜晚车间光照不足的暗淡图像效果不好。针对这一问题,引入一种利用深度学习的有效浮选泡沫分类方法,建立了一个深度卷积神经网络同时执行特征学习与泡沫分类,逐层运算抽取图像本质信息,过滤光线影响。实验结果表明,在白天强光和夜晚弱光下,无需图像增强等预处理均获得很高的准确率,实现浮选泡沫端到端分类,提高了识别的抗干扰能力。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||
|