收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于CMAES集成学习方法的地表水质分类

陈兴国  徐修颖  陈康扬  杨光  
【摘要】:为了提高人民生活质量,政府部门不断加强水质管理,然而人工分类方法无法满足实时处理的需求,传统机器学习方法的分类准确率又不够高。集成学习使用多种学习算法来获得比单一学习算法更好的预测性能。首先,对集成学习进行概述,简要介绍了Bagging和Boosting算法,并提出基于协方差自适应调整的进化策略算法(CMAES)的集成学习方法。接着,介绍了数据处理方式、模型评估方法和评价指标。最后,用CMAES集成学习方法对逻辑回归、线性判别分析、支持向量机、决策树、完全随机树、朴素贝叶斯、K-邻近算法、随机森林、完全随机树林、深度级联森林十种模型进行集成。实验结果表明,CMAES集成学习方法优于所有其他模型,该方法将继续被应用到未来的研究之中。

知网文化
【相似文献】
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978