收藏本站
《计算机与现代化》 2020年09期
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

单时序特征图卷积网络融合预测方法

李昊天  盛益强  
【摘要】:近年来,图神经网络逐渐成为深度学习领域广泛讨论的话题和研究的重点,但大多数研究都是基于图节点,在存在多维属性的前提下进行分类和回归预测,对单时序特征的图节点预测并不能产生理想的效果。本文提出一种时序图卷积网络算法,可以在复杂图网络中,只根据节点单一特征的时序序列,实现对该特征的预测。算法通过在传统图卷积网络中对邻接矩阵参数化,解决单一特征条件下的参数退化问题,并结合长短时记忆网络的序列学习方法,将时序信息融入到训练过程中,提高训练精度。在交通流量数据集PeMS和Los上的实验表明,其预测精度要优于GCN、T?GCN、GRU、LSTM等主流算法。

知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026