收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于数据融合的路段行程时间估计

胡小文  杨东援  
【摘要】:基于检测器数据的路段行程时间估计通常具有精度不高和可靠性差的特点。论文引入了自适应式卡尔曼滤波,采用K近邻法寻找相似的交通流状态来标定状态转移系数,建立了基于固定型检测器数据和移动型检测器数据的路段行程时间估计融合模型。实际数据的验证结果是,平均相对误差为9.52%,相对误差的标准差为8.92%。研究表明,与基于移动检测器数据的估计方法相比较,该方法极大地改善了估计精度和可靠性,还具有收敛速度快、对初值不敏感、参数少等特点。

知网文化
【相似文献】
中国期刊全文数据库 前20条
1 吕斌;牛惠民;;城市交通线控系统相位差优化方法[J];交通运输工程学报;2011年04期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
11 ;[J];;年期
12 ;[J];;年期
13 ;[J];;年期
14 ;[J];;年期
15 ;[J];;年期
16 ;[J];;年期
17 ;[J];;年期
18 ;[J];;年期
19 ;[J];;年期
20 ;[J];;年期
中国重要会议论文全文数据库 前1条
1 龚珊;尹相勇;朱爱华;;基于浮动车的路段行程时间卡尔曼滤波预测算法[A];2008第四届中国智能交通年会论文集[C];2008年
中国硕士学位论文全文数据库 前1条
1 高学英;城市道路路段行程时间估计及融合方法研究[D];吉林大学;2009年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978