支持向量机在网络异常入侵检测中的应用研究
【摘要】:研究网络安全问题,针对对网络异常入侵检测数据的特征进行提取,用传统异常入侵检测算法存在小样本情况下训练精度高,预测精度低的过拟合缺陷,出现误报和漏报现象,提出一种基于支持向量机的网络异常入侵检测方法。在支持向量机的网络异常入侵检测过程中,利用网格法寻找支持向量机最优参数,并找到的最优参数对网络异常入侵训练样本进行训练学习,得到最优异常入侵检测模型,对入侵检测数据进行预测。以网络异常入侵标准数据库DARPA中的数据集进行了仿真。仿真结果表明,小样本数据的支持向量机有较高的网络入侵检测准确率,具有较好的实时性,是一种高效、误报和漏报率低的网络异常入侵检测方法。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|